Optimized Steffensen-Type Methods with Eighth-Order Convergence and High Efficiency Index

نویسنده

  • Fazlollah Soleymani
چکیده

Steffensen-type methods are practical in solving nonlinear equations. Since, such schemes do not need derivative evaluation per iteration. Hence, this work contributes two new multistep classes of Steffensen-type methods for finding the solution of the nonlinear equation f x 0. New techniques can be taken into account as the generalizations of the one-step method of Steffensen. Theoretical proofs of the main theorems are furnished to reveal the eighth-order convergence. Per computing step, the derived methods require only four function evaluations. Experimental results are also given to add more supports on the underlying theory of this paper as well as lead us to draw a conclusion on the efficiency of the developed classes.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Adaptive Steffensen-like Methods with Memory for Solving Nonlinear Equations with the Highest Possible Efficiency Indices

The primary goal of this work is to introduce two adaptive Steffensen-like methods with memory of the highest efficiency indices. In the existing methods, to improve the convergence order applied to memory concept, the focus has only been on the current and previous iteration. However, it is possible to improve the accelerators. Therefore, we achieve superior convergence orders and obtain as hi...

متن کامل

On a New Efficient Steffensen-Like Iterative Class by Applying a Suitable Self-Accelerator Parameter

It is attempted to present an efficient and free derivative class of Steffensen-like methods for solving nonlinear equations. To this end, firstly, we construct an optimal eighth-order three-step uniparameter without memory of iterative methods. Then the self-accelerator parameter is estimated using Newton's interpolation in such a way that it improves its convergence order from 8 to 12 without...

متن کامل

Eighth-order methods with high efficiency index for solving nonlinear equations

In this paper, we construct two new families of eighth-order methods for solving simple roots of nonlinear equations by using weight function and interpolation methods. Per iteration in the present methods require three evaluations of the function and one evaluation of its first derivative, which implies that the efficiency indexes are 1.682. Kung and Traub conjectured that an iteration method ...

متن کامل

A variant of Steffensen-King's type family with accelerated sixth-order convergence and high efficiency index: Dynamic study and approach

Keywords: Multipoint iterative methods Steffensen's method King's family Derivative-free Efficiency index a b s t r a c t First, it is attempted to derive an optimal derivative-free Steffensen–King's type family without memory for computing a simple zero of a nonlinear function with efficiency index 4 1=3 % 1:587. Next, since our without memory family includes a parameter in which it is still p...

متن کامل

A class of Steffensen type methods with optimal order of convergence

In this paper, a family of Steffensen type methods of fourth-order convergence for solving nonlinear smooth equations is suggested. In the proposed methods, a linear combination of divided diferences is used to get a better approximation to the derivative of the given function. Each derivative-free member of the family requires only three evaluations of the given function per iteration. Therefo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Int. J. Math. Mathematical Sciences

دوره 2012  شماره 

صفحات  -

تاریخ انتشار 2012